

Cambridge International AS & A Level

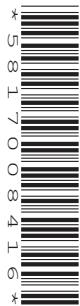
CANDIDATE
NAME

CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--



PHYSICS

9702/52

Paper 5 Planning, Analysis and Evaluation

October/November 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 30.
- The number of marks for each question or part question is shown in brackets [].

This document has **8** pages.

1 Fig. 1.1 shows a coil made from resistance wire.

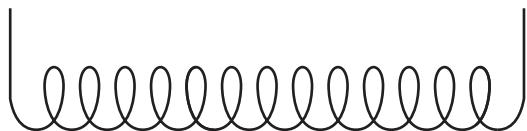


Fig. 1.1

The coil is placed in cooking oil of mass m . The total length of the resistance wire in the oil is L .

A potential difference V is applied to the coil. The temperature of the oil increases by $\Delta\theta$ in time t .

It is suggested that $\Delta\theta$ is related to L by the relationship

$$\frac{AtV^2}{L} = mK\Delta\theta + Z$$

where A is the cross-sectional area of the wire, and K and Z are constants.

Plan a laboratory experiment to test the relationship between $\Delta\theta$ and L .

Draw a diagram showing the arrangement of your equipment.

Explain how the results could be used to determine values for K and Z .

In your plan you should include:

- the procedure to be followed
- the measurements to be taken
- the control of variables
- the analysis of the data
- any safety precautions to be taken.

Diagram

DO NOT WRITE IN THIS MARGIN

2 A student investigates the refraction of white light entering a transparent rectangular block. A narrow beam of light enters the block at the midpoint of one of the shorter sides. The angle of incidence θ is measured, as shown in Fig. 2.1.

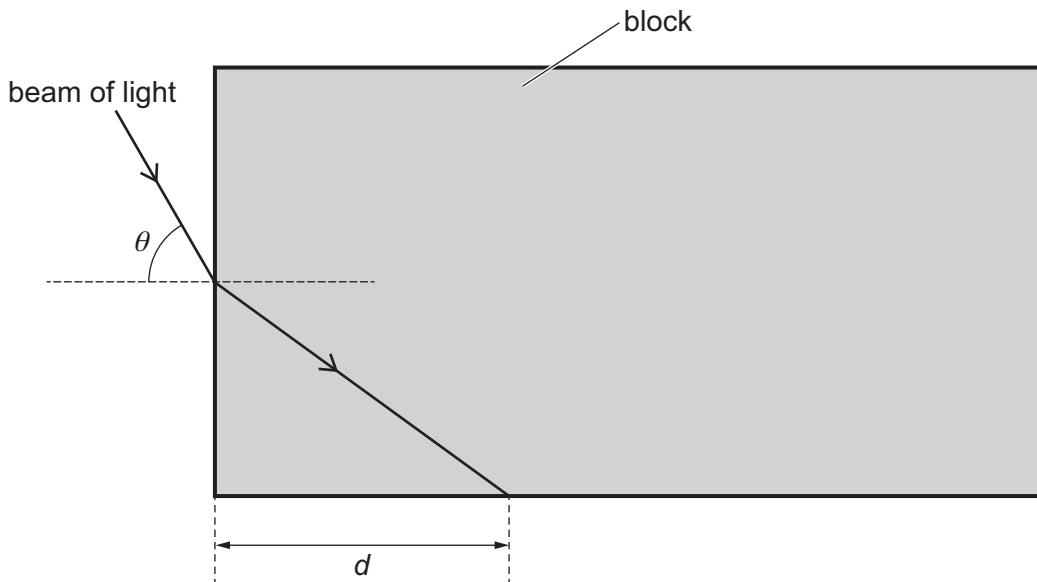


Fig. 2.1 (not to scale)

The distance d between the corner of the block and the point where the beam of light touches the boundary of the block is measured.

The experiment is repeated for different values of θ .

It is suggested that d and θ are related by the equation

$$\frac{B}{B + d^2} = \frac{\sin^2 \theta}{n^2}$$

where B and n are constants.

(a) A graph is plotted of d^2 on the y -axis against $\frac{1}{\sin^2 \theta}$ on the x -axis.

Determine expressions for the gradient and y -intercept.

gradient =

y -intercept =

[1]

[Turn over]

(b) Values of θ , $\frac{1}{\sin^2 \theta}$ and d are given in Table 2.1.

Table 2.1

$\theta / {}^\circ$	$\frac{1}{\sin^2 \theta}$	d / cm	d^2 / cm^2
28.5	4.39	24.8 ± 0.2	
33.5	3.28	21.4 ± 0.2	
42.5	2.19	17.1 ± 0.2	
50.0	1.70	14.7 ± 0.2	
57.5	1.41	12.9 ± 0.2	
63.5	1.25	11.8 ± 0.2	

Calculate and record values of d^2 / cm^2 in Table 2.1.

Include the absolute uncertainties in d^2 .

[2]

(c) (i) Plot a graph of d^2 / cm^2 against $\frac{1}{\sin^2 \theta}$. Include error bars for d^2 . [2]

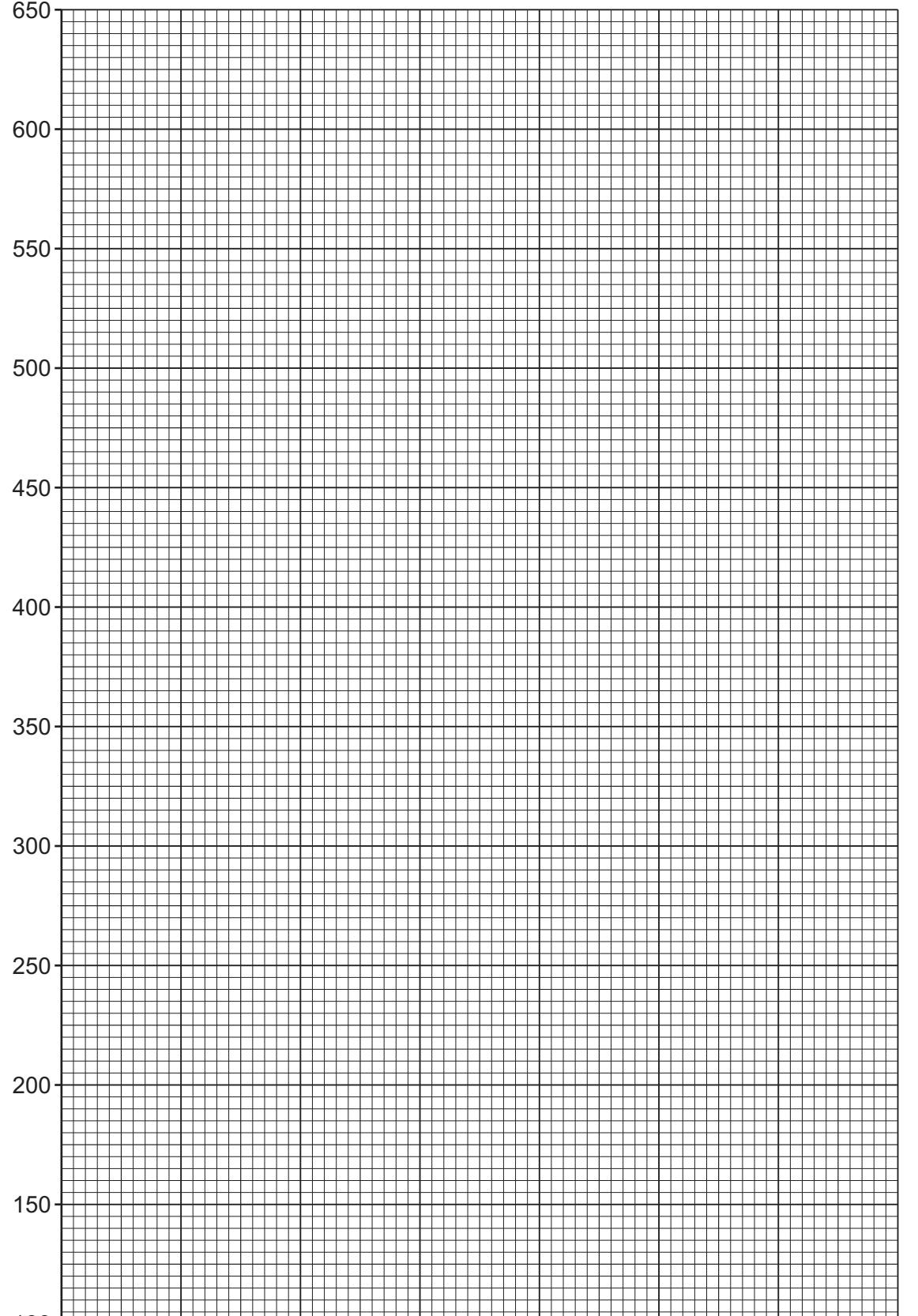
(ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Label both lines. [2]

(iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your answer.

gradient = [2]

DO NOT WRITE IN THIS MARGIN

d^2/cm^2



$$\frac{1}{\sin^2 \theta}$$

(iv) Determine the y -intercept of the line of best fit. Include the absolute uncertainty in your answer.

y -intercept = [2]

(d) (i) Using your answers to (a), (c)(iii) and (c)(iv), determine the values of B and n . Include appropriate units.

B =

n =
[2]

(ii) Determine the percentage uncertainty in n .

percentage uncertainty in n = % [1]

(e) The experiment is repeated. Determine the angle θ that gives a value of d of 30.0 cm.

θ = ° [1]

[Total: 15]

